
Backtrack search algorithms

BT BJ CBJ

BM BMJ BM-CBJ

FC FC-BJ FC-CBJ

Go back

G
o

fo
rw

ar
d

Backtrack search

procedure bcssp(n)

consistent = true

i = initialize()

loop
if consistent then (i, consistent) = label(i)

else (i, consistent) = unlabel(i)

if i > n then return “solution found”

else if i = 0 then return “no solution”

endloop
end bcssp

Chronological backtracking: label

function bt-label(i)

for each vk CDi do
Set xi = vk and consistent = true

for j from 1 to i–1 do /* Previously assigned variables*/

if Cij(xi, xj) then
Remove vk from CDi and set consistent = false

Unassign xi and break inner loop

endif
if consistent then return (i+1, true)

endfor
return (i, false)

end bt-label

Chronological backtracking: unlabel

function bt-unlabel(i)

h = i – 1 /* Backtrack to previous variable */

CDi = Di

Remove current value assigned to xh from CDh

Unassign xh

if CDh is empty then
return (h, false)

else
return (h, true)

end bt-unlabel

Backtrack search in N-queens

• Figure 2 from Kondrak & van Beek 1997

Backjumping

• max-checki (initialized to 0)

– deepest variable with which variable xi performed a
consistency check

– if xi has no consistent values, then jump back to max-checki

Backjumping: label
Modification to bt-label
function bj-label(i)

for each vk CDi do
Set xi = vk and consistent = true

for j from 1 to i–1 do /* for each past variable */

max-checki = max(max-checki, j)

if Cij(xi, xj) then
Remove vk from CDi and set consistent = false

Unassign xi and break inner loop

endif
endfor
if consistent then return (i+1, true)

endfor
return (i, false)

end bj-label

Backjumping: unlabel
Modification of bt-unlabel

function bj-unlabel(i)

h = max-checki

for j from h+1 to i do
max-checkj = 0

CDj = Dj

endfor
Remove current value assigned to xh from CDh

Unassign xh

if CDh is empty then return (h, false)

else return (h, true)

end bj-unlabel

Conflict-directed backjumping

• conf-seti (initialized to {0})

– set of past variables with which xi conflicts

– h is in conf-seti if variable xh played a role in ruling out a
value for xi

Conflict-directed backjumping: label
Modification to bj-label
function cbj-label(i)

for each vk CDi do
Set xi = vk and consistent = true

for j from 1 to i–1 do /* for each past variable */

if Cij(xi, xj) then
conf-seti = conf-seti {j}

Remove vk from CDi and set consistent = false

Unassign xi and break inner loop

endif
endfor
if consistent then return (i+1, true)

endfor
return (i, false)

end cbj-label

Conflict-directed backjumping: unlabel
Modification to bj-unlabel

function cbj-unlabel(i)

h = max-list(conf-seti) /* Deepest variable in conflict */

conf-seth = (conf-seth conf-seti) \ {h}

for j from h+1 to i do
conf-setj = {0}

CDj = Dj

endfor
Remove current value assigned to xh from CDh

Unassign xh

if CDh is empty then return (h, false)

else return (h, true)

end cbj-unlabel

Backmarking

Attempts to minimize redundant consistency checks

a) xi is about to instantiated with value v such that

– v had previously failed a constraint check with xj

– xj’s value has not changed since that check

 constraint check will fail again

b) xi is about to instantiated with value v such that

– v had previously succeeded in a constraint check with xj

– xj’s value has not changed since that check

 constraint check with j and its predecessors will succeed
again

Backmarking: Data structures

• mclik (initialized to 0)

– n d maximum checking level array

– mclik is the deepest variable against which xi = vk checked

– finer grained version of max-checki

 constraint checks with variable mclik and its predecessors
need to be repeated only if they have changed

• mbli (initialized to 0)

– minimum backup level array

– records the shallowest past variable that has changed since
xi was the current variable

 variables prior to mbli have not changed since last time

Backmarking: label
Modification of bt-label

function bm-label(i)

for each vk CDi do
if mclik mbli then

Set xi = vk and consistent = true

for j from mbli to i–1 do
mclik = j

if Cij(xi, xj) then
Remove vk from CDi and set consistent = false

Unassign xi and break inner loop

endif
endfor
if consistent then return (i+1, true)

else Remove vk from CDi

endfor
return (i, false)

Backmarking: unlabel
Modification of bt-unlabel

function bm-unlabel(i)

h = i – 1

CDi = Di

 mbli = h

for j from h+1 to n do mblj = min(mblj, h)

Remove current value assigned to xh from CDh

Unassign xh

if CDh is empty then return (h, false)

else return (h, true)

end bm-unlabel

BM-CBJ: label
Modification of bm-label

function bm-cbj-label(i)

for each vk CDi do
if mclik mbli then

Set xi = vk and consistent = true

for j from mbli to i–1 do
mclik = j

if Cij(xi, xj) then
conf-seti = conf-seti {j}

Remove vk from CDi and set consistent = false

Unassign xi and break inner loop

endif
endfor

if consistent then return (i+1, true)

else Remove vk from CDi and conf-seti = conf-seti {mclik}

endfor

return (i, false)

endbm-cbj-label

BM-CBJ: unlabel
Modification of cbj-unlabel

function bm-cbj-unlabel(i)

h = max-list(conf-seti)

conf-seth = (conf-seth conf-seti) \ {h}

mbli = h

for j from h+1 to n do mblj = min(mblj, h)

for j from h+1 to i do
conf-setj = {0}

CDj = Dj

endfor
Remove current value assigned to xh from CDh

Unassign xh

if CDh is empty then return (h, false)

else return (h, true)

end bm-cbj-unlabel

Forward checking

When xi = vk is attempted, the domain of xj (i < j n) is filtered

• reductionsj (initialized to {})

– stack in which each element is a list of values in Dj that are
disallowed by a previously instantiated variable

• past-fcj (initialized to {})

– stack of past variables that have checked against xj

• future-fci (initialized to {})

– stack of future variables against which xi has checked

Stack operations are in tandem

Forward checking: label
Modification of bt-label

function fc-label(i)

for each vk CDi do
Set xi = vk and consistent = true

for j from i+1 to n do
if check-forward(i, j) then

Remove vk from CDi and set consistent = false

undo-reductions(i)

Unassign xi and break inner loop

endif
if consistent then return (i+1, true)

endfor
return (i, false)

end fc-label

Checking forward
function check-forward(i, j)

reductions = {}

for each vk CDj do
Set xj = vk

if Cij(xi, xj) then reductions = reductions {vk}

endfor
if reductions {} then

CDj = CDj \ reductions

push(j, future-fci)

push(reductions, reductionsj)

push(i, past-fcj)

endif
return CDj {}

end check-forward

Undo forward checking reductions

procedure undo-reductions(i)

while forward-fci is not empty do
j = pop(forward-fci)

reductions = pop(reductionsj)

CDj = CDj reductions

pop(past-fcj)

endwhile
end undo-reductions

Forward checking: unlabel
Modification of bt-unlabel

function fc-unlabel(i)

h = i – 1

undo-reductions(h)

update-current-domain(i)

Remove current value assigned to xh from CDh

Unassign xh

if CDh is empty then return (h, false)

else return (h, true)

end fc-unlabel

Updating current domains

procedure update-current-domain(i)

CDi = Di

for each reductions reductionsi do
CDi = CDi \ reductions

end update-current-domain

 FC-CBJ: label
Modification of fc-label
function fc-cbj-label(i)

for each vk CDi do
Set xi = vk and consistent = true

for j from i+1 to n do
if check-forward(i, j) then

Remove vk from CDi and set consistent = false

undo-reductions(i)

conf-seti = conf-seti past-fcj

Unassign xi and break inner loop

endif
if consistent then return (i+1, true)

endfor
return (i, false)

end fc-cbj-label

FC-CBJ: unlabel
Modification of cbj-unlabel

function fc-cbj-unlabel(i)

h = max(max-list(conf-seti), max-list(past-fci))

conf-seth = (conf-seth conf-seti past-fci) \ {h}

for j from i downto h+1 do
conf-setj = {0}

undo-reductions(j)

update-current-domain(j)

endfor
undo-reductions(h)

Remove current value assigned to xh from CDh and unassign xh

if CDh is empty then return (h, false)

else return (h, true)

end fc-cbj-unlabel

Zebra problem and results

• Zebra problem from Prosser 1993

• Tables 1 and 3 from Prosser 1993

